DrägerSensor[®] Smart CatEx (HC PR) Order no. 68 12 970

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	2 years	> 3 years	-

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	2% LEL
Resolution:	1.0% LEL for the measuring range 0 to 100% LEL
	0.02 Vol% for the measuring range 0 to 5 Vol% CH4 (methane)
	1 Vol% for the measuring range 5 to 100 Vol% CH_4 (methane)
Measurement range:	0 to 100% LEL or
	0 to 100 Vol% CH ₄ (methane)
General technical specifications	
Ambient conditions	
Temperature:	(−20 to 55)°C (−4 to 131)°F
Humidity:	(10 to 95)% RH
Pressure:	(700 to 1,300) hPa
Warm-up time:	≤ 5 minutes

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH **METHANE IN AIR:**

Response time:	≤ 15 seconds (T ₅₀)
	\leq 25 seconds (T ₉₀)
Measurement accuracy	
Sensitivity:	≤ ± 2.5% of measured value
Linearity error	≤ ± 2% LEL (0-40% LEL)
	\leq ± 5% of measured value (40–100% LEL)
Long-term drift	
Zero point:	≤ ± 1% LEL/month
Sensitivity:	≤ ± 2% LEL/month
	typ. values for X-am 7000 $\leq \pm$ 1% LEL/month
Influence of temperature	
Zero point:	≤ ± 0.1% LEL/K at (−20 to 40)°C (−4 to 104)°F
Sensitivity:	\leq ± 0.3% of measured value/K at (-20 to 40)°C (-4 to 104)°F
Influence of humidity	
Zero point:	≤ ± 0.03% LEL/% RH
Sensitivity:	\leq ± 0.1% of measured value/% RH
Effect of sensor poisons:	Hydrogen sulphide H ₂ S 1000 ppmh $\leq \pm 5$ % of measured value
	Hexamethyldisiloxane HMDS 10 ppmh ≤ ± 5 % of measured value
	Hexamethyldisiloxane HMDS 30 ppmh ≤ ± 20 % of measured value
	After an exposure of 10 ppm HDMS for 5 hours, the sensivity loss is
	less than 50 %. Halogenated hydrocarbons, heavy metals, substan-
	ces containing silicone or sulfur, or substances that can polymerize
	\rightarrow potential poisoning.
Test gas:	approx. 2 Vol% or 50 Vol% CH ₄ test gas
-	

| 81

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH PROPANE IN AIR:

Response time:	≤ 20 seconds (T ₅₀)		
	\leq 40 seconds (T ₉₀)		
Measurement accuracy			
Sensitivity:	$\leq \pm 2.5\%$ of measured value		
Linearity error:	≤ ± 4% LEL (0−40% LEL)		
	$\leq \pm$ 10% of measured value (40–100% LEL)		
Long-term drift			
Zero point:	≤ ± 4% LEL/month		
Sensitivity:	≤ ± 1% LEL/month		
	typ. values for X-am 7000 $\leq \pm$ 1% LEL/month		
Influence of temperature			
Zero point:	≤ ± 0.1% LEL/K at (-20 to 40)°C (-4 to 104)°F		
Sensitivity:	\leq ± 0.3% of measured value/K at (-20 to 40)°C (-4 to 104)°F		
Influence of humidity			
Zero point:	≤ ± 0.04% LEL/% RH		
Sensitivity:	≤ ± 0.1% of measured value/% RH		

FOR THE MEASUREMENT RANGE 0 TO 100 VOL.-% CH4:

Response time:	≤ 35 seconds at 0 to 5 Vol% (T ₉₀)		
Measurement accuracy	1 Vol% CH4		
Linearity error:			
0 to 50 Vol%	≤ ± 5 Vol%		
50 to 100 Vol%	≤ ± 10% of measured value		
Long-term drift			
Zero point:	≤ ± 3 Vol%/month		
Sensitivity:	≤ ± 3 Vol%/month		
Influence of temperature			
Sensitivity 0 to 50 Vol%	≤ ± 0.2 Vol%/K at (−20 to 40)°C (−4 to 104)°F		
Sensitivity 50 to 100 Vol%	$\leq \pm 0.3\%$ of measured value/K at (-20 to 40)°C (-4 to 104)°F		
Influence of humidity			
Sensitivity 0 to 50 Vol%	≤ ± 0.15 Vol%/% RH		
Sensitivity 50 to 100 Vol%	≤ ± 0.2% of measured value/% RH		

Visit: www.thesafetyequipmentstore.com Or Email: besafe@thesafetyequipmentstore.com for Sales & Service.

82 | Dräger CatEx sensors

TECHNICAL SPECIFICATIONS

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH NONANE IN AIR:

Response time, rising:	\leq 60 seconds (T ₅₀)
	≤ 320 seconds (T ₉₀)
Response time, declining:	\leq 130 seconds (T ₅₀)
	≤ 1000 seconds (T ₉₀)

SPECIAL CHARACTERISTICS

The DrägerSensor® Smart CatEx (HC PR) is used to detect flammable gases and vapors in the ambient air: LEL monitoring or, in the case of methane, also Vol.-% monitoring. It has an excellent poison resistance against hydrogen sulphide, siloxiane and other sensor poisons. These sensors have been tested according to EN 61779-1 and EN 61779-4 for methane, propane, and nonane for 0–100% LEL, and for 0–100 Vol.-% for methane in accordance with EN 61779-1 and EN 61779-5. Substance-specific data is stored in the data memory for 35 different gases and vapors.

DETECTING OTHER GASES AND VAPORS

Through the use of cross sensitivities for the measurement range of 0 to 100% LEL. The figures given are typical readings when calibrated with methane (CH₄) and apply to new sensors without additional diffusion barriers. A LEL of 4.4 Vol.-% was used for methane. If an LEL of 5.0 Vol.-% is used, then the figures in the table must be multiplied by a factor of 0.88. The table does not claim to be complete. The sensor may also be sensitive to other gases and vapors.

Gas/vapor	Chem. symbol	Test gas concentration	Displayed
		in Vol%	reading in % LEL
Acetone	CH ₃ COCH ₃	1.25	31
1,3-butadiene	CH ₂ CHCHCH ₂	0.70	26
Acetic acid	CH ₃ COOH	3.00	23
Ammonia	NH ₃	7.70	58
Benzene	C ₆ H ₆	0.60	22
Butane	C ₄ H ₁₀	0.70	27
Butanone	CH ₃ COC ₂ H ₅	0.75	22
Carbon monoxide	CO	5.45	41
Cyclohexane	C ₆ H ₁₂	0.50	21
Cyclopentane	C ₅ H ₁₀	0.70	27

| 83

Gas/vapor	Chem. symbol	Test gas concentration in Vol%	Displayed reading in % LEL
Diethyl ether	(C ₂ H ₅) ₂ O	0.85	24
Diethylamine	$(C_2H_5)_2NH$	0.85	26
Ethane	C ₂ H ₆	1.20	34
Ethanol	C_2H_5OH	1.55	31
Ethene	C_2H_4	1.20	36
Ethyl acetate	CH ₃ COOC ₂ H ₅	1.00	24
Ethine	C_2H_2	1.15	34
Heptane	C ₇ H ₁₆	0.40	18
Hexane	C ₆ H ₁₄	0.50	21
Hydrogen	H ₂	2.00	48
1-Methoxy-Propanol-2	C ₄ H ₁₀ O ₂	0.90	22
Methane	CH ₄	2.20	50
Methanol	CH₃OH	3.00	39
Methyl tert-butyl ether (MTBE)	CH ₃ OC(CH ₃) ₃	0.80	27
n-butanol	C4H9OH	0.70	19
n-butyl acetate	CH ₃ COOC ₄ H ₉	0.60	17
Nonane	C ₉ H ₂₀	0.35	13
Octane	C ₈ H ₁₈	0.40	17
Pentane	C ₅ H ₁₂	0.55	21
Pentanol	C ₅ H ₁₁ OH	0.60	19
Propane	C ₃ H ₈	0.85	28
Propanol	C ₃ H ₇ OH	0.60	19
Propene	C ₃ H ₆	1.00	32
Propylene oxide	C ₃ H ₆ O	0.95	23
Styrol	C ₆ H ₅ CHCH ₂	0.50	15
Toluene	$C_6H_5CH_3$	0.50	19
Xylene	C ₆ H4(CH ₃) ₂	0.55	19