Visit: www.thesafetyequipmentstore.com Or Email: besafe@thesafetyequipmentstore.com for Sales & Service.

84 | Dräger CatEx sensors

DrägerSensor[®] Smart CatEx (PR) Order no. 68 12 980

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	2 years	> 3 years	-

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	2% LEL
Resolution:	1.0% LEL for the measuring range 0 to 100% LEL,
	0.02 Vol% for the measuring range 0 to 5 Vol% CH4 (methane)
Measurement range:	0 to 100% LEL
General technical specifications	
Ambient conditions	
Temperature:	(−20 to 55)°C (−4 to 131)°F
Humidity:	(10 to 95)% RH
Pressure:	(700 to 1,300) hPa
Warm-up time:	≤ 5 minutes

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH **METHANE IN AIR:**

Response time:	≤ 15 seconds (T ₅₀)		
	≤ 25 seconds (T ₉₀)		
Measurement accuracy			
Sensitivity:	$\leq \pm 2.5\%$ of measured value		
Linearity error:	≤ ± 2% LEL (0-40% LEL)		
	\leq ± 5% of measured value (40–100% LEL)		
Long-term drift			
Zero point:	≤ ± 1% LEL/month		
Sensitivity:	≤ ± 2% LEL/month		
	typ. values for X-am 7000 $\leq \pm$ 1% LEL/month		
Influence of temperature			
Zero point:	≤ ± 0.1% LEL/K at (−20 to 40)°C (−4 to 104)°F		
Sensitivity:	$\leq \pm 0.3\%$ of measured value/K at (-20 to 40)°C (-4 to 104)°F		
Influence of humidity			
Zero point:	≤ ± 0.03% LEL/% RH		
Sensitivity:	$\leq \pm 0.1\%$ of measured value/% RH		
Effect of sensor poisons:	Hydrogen sulphide H₂S 1000 ppmh ≤ ± 5 % of measured value		
	Hexamethyldisiloxane HMDS 10 ppmh ≤ ± 5 % of measured value		
	Hexamethyldisiloxane HMDS 30 ppmh ≤ ± 20 % of measured value		
	After an exposure of 10 ppm HDMS for 5 hours, the sensivity loss		
	is less than 50 %. Halogenated hydrocarbons, heavy metals, sub-		
	stances containing silicone or sulfur, or substances that can poly-		
	merize → potential poisoning.		
Test gas:	approx. 2 Vol% CH ₄ test gas		

| 85

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH PROPANE IN AIR:

Response time:	≤ 20 seconds (T ₅₀)
	\leq 40 seconds (T ₉₀)
Measurement accuracy	
Sensitivity:	$\leq \pm 2.5\%$ of measured value
Linearity error:	≤ ± 4% LEL (0-40% LEL)
	$\leq \pm$ 10% of measured value (40–100% LEL)
Long-term drift	
Zero point:	≤ ± 4% LEL/month
Sensitivity:	≤ ± 1% LEL/month
	typ. values for X-am 7000 $\leq \pm$ 1% LEL/month
Influence of temperature	
Zero point:	≤ ± 0.1% LEL/K at (−20 to 40)°C (−4 to 104)°F
Sensitivity:	$\leq \pm 0.3\%$ of measured value/K at (-20 to 40)°C (-4 to 104)°F
Influence of humidity	
Zero point:	≤ ± 0.04% LEL/% RH
Sensitivity:	≤ ± 0.1% of measured value/% RH

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH NONANE IN AIR:

Response time, rising:	\leq 60 seconds (T ₅₀)
	≤ 320 seconds (T ₉₀)
Response time, declining:	≤ 130 seconds (T ₅₀)
	≤ 1000 seconds (T ₉₀)

Visit: www.thesafetyequipmentstore.com Or Email: besafe@thesafetyequipmentstore.com for Sales & Service.

86 | Dräger CatEx sensors

SPECIAL CHARACTERISTICS

The DrägerSensor® Smart CatEx (PR) is used to detect flammable gases and vapors around the LEL in the ambient air. It has an excellent poison resistance against hydrogen sulphide, siloxiane and other sensor poisons. These sensors have been tested according to EN 61779-1 and EN 61779-4 for methane, propane, and nonane for a range of 0–100% LEL. Substance-specific data is stored in the data memory for 35 different gases and vapors.

DETECTING OTHER GASES AND VAPORS

Through the use of cross sensitivities for the measurement range of 0 to 100% LEL. The figures given are typical readings when calibrated with methane (CH₄) and apply to new sensors without additional diffusion barriers. A LEL of 4.4 Vol.-% was used for methane. If a LEL of 5.0 Vol.-% is used, then the figures in the table must be multiplied by a factor of 0.88. The table does not claim to be complete. The sensor may also be sensitive to other gases and vapors.

Gas/vapor	Chem. symbol	Test gas concentration in Vol%	Displayed reading in %
		III VOI70	LEL
Acetone	CH ₃ COCH ₃	1.25	31
1,3-butadiene	CH ₂ CHCHCH ₂	0.70	26
Acetic acid	CH ₃ COOH	3.00	23
Ammonia	NH ₃	7.70	58
Benzene	C ₆ H ₆	0.60	22
Butane	C ₄ H ₁₀	0.70	27
Butanone	CH ₃ COC ₂ H ₅	0.75	22
Carbon monoxide	СО	5.45	41
Cyclohexane	C ₆ H ₁₂	0.50	21
Cyclopentane	C ₅ H ₁₀	0.70	27
Diethyl ether	(C ₂ H ₅) ₂ O	0.85	24
Diethylamine	(C ₂ H ₅) ₂ NH	0.85	26
Ethane	C ₂ H ₆	1.20	34
Ethanol	C ₂ H ₅ OH	1.55	31
Ethene	C ₂ H ₄	1.20	36
Ethyl acetate	CH ₃ COOC ₂ H ₅	1.00	24
Ethine	C ₂ H ₂	1.15	34
Heptane	C ₇ H ₁₆	0.40	18
Hexane	C ₆ H ₁₄	0.50	21
Hydrogen	H ₂	2.00	48
1-Methoxy-Propanol-2	C ₄ H ₁₀ O ₂	0.90	22
Methane	CH ₄	2.20	50
Methanol	CH ₃ OH	3.00	39
Methyl tert-butyl ether (MTBE)	CH ₃ OC(CH ₃) ₃	0.80	27
n-butanol	C4H ₉ OH	0.70	19

| 87

Gas/vapor	Chem. symbol	Test gas concentration in Vol%	Displayed reading in % LEL
n-butyl acetate	CH ₃ COOC ₄ H ₉	0.60	17
Nonane	C ₉ H ₂₀	0.35	13
Octane	C ₈ H ₁₈	0.40	17
Pentane	C ₅ H ₁₂	0.55	21
Pentanol	C ₅ H ₁₁ OH	0.60	19
Propane	C ₃ H ₈	0.85	28
Propanol	C ₃ H ₇ OH	0.60	19
Propene	C ₃ H ₆	1.00	32
Propylene oxide	C ₃ H ₆ O	0.95	23
Styrol	C ₆ H ₅ CHCH ₂	0.50	15
Toluene	C ₆ H ₅ CH ₃	0.50	19
Xylene	C ₆ H4(CH ₃) ₂	0.55	19